• 購物車(0)
繁體中文
English
简体中文
한국어
日本語
繁體中文
  • 登錄
  • 產品
    嵌入式模組化電腦
    • COM-HPC
    • COM Express
    • OSM
    • SMARC
    • Qseven
    • ETX
    GPU解決方案
    • MXM GPU 模組
    • PCIe 顯示卡
    強固型運算
    • CompactPCI & CompactPCI Serial
    • VPX
    • PC104
    • AVA Railway Rugged Computers
    • PIDS
    邊緣運算平台
    • 工業電腦 / 主機板 / 單板電腦
    • 嵌入式電腦 / IoT Gateway
    • 邊緣 AI 運算平台
    • AI 智慧相機
    • 機器人控制器
    • 工業級固態硬碟 (SSD)
    工業級顯示系統與平板電腦
    • 工業級觸控顯示器
    • Open Frame 平板電腦
    • All-in-One 平板電腦
    • 強固型面板電腦
    • 數位看板播放器
    車用解決方案
    • 自動駕駛解決方案
    • AI-ADAS 解決方案
    網路通訊與伺服器
    • AI GPU 伺服器
    • 工業級邊緣伺服器
    • 網路安全平台
    • P5G 工業自動化專網-MicroRAN
    自動化與控制
    • 機器視覺
    • 運動控制與 I/O
    • EtherCAT 運動控制解決方案
    • HMI 平板電腦
    • 資料擷取模組
    • GPIB 與數字化儀
    • PXI 平台與模組
    • 自主移動機器人
    • 工業物聯網閘道器
    設計與製造服務
    • DMS+ (ODM/OEM 服務)
    醫療專用電腦與顯示器
    • 醫療專用觸控電腦
    • 醫療專用顯示器
    • 醫療專用 BOX PC
    軟體
    • EdgeGO
  • 產業
    車用解決方案 軍工與航太 娛樂資訊 智慧醫療 半導體解決方案 智慧製造 鐵路 機器人技術

    車用解決方案

    車用解決方案

    凌華科技的自動駕駛運算平台採用尖端技術,致力提供更安全、更高效的駕駛運行。以強大的運算能力,滿足自動駕駛和先進駕駛輔助系統(ADAS)技術,並提供適用於汽車的堅固設計。

    了解更多

    軍工與航太

    軍工與航太

    在軍工航太領域中,準確觀察環境並做出快速可靠的決策並及時採取行動至關重要。 凌華科技強固的系統和Data Distribution Service(DDS)是大型數據基礎架構的關鍵,該基礎架構可收集、儲存、分析資訊並將資訊從現場傳遞給決策者。

    了解更多

    娛樂資訊

    娛樂

    凌華科技博弈平台解決方案透過我們的軟、硬體和顯示產品為全球遊戲機製造商提供全面性的服務。 我們將電腦專業知識與尖端軟體完美結合,並遵循博弈產業的要求和法規限制來為我們客戶提供服務,使他們能夠專注於打造世界上最好的娛樂體驗。

    了解更多

    智慧醫療

    智慧醫療

    凌華科技專注於醫療可視化設備和經過醫療認證的解決方案,來滿足智慧醫療數位化的需求。 透過PENTA在醫療領域的設計和製造能力,凌華科技的智慧醫療解決方案可加速各種醫療環境中的智慧轉型。

    了解更多

    半導體解決方案

    半導體解決方案

    你所能想像的一切,都因晶片而有所改變。為了滿足不同應用的需求,完美的晶圓製造對於品質的工藝要求到效率和生產力的過程都無比講究。

    了解更多

    智慧製造

    智慧製造

    借由邊緣運算,ADLINK 智慧製造解決方案加速更快的數據決策,為半導體和電子製造業創造更具彈性和安全性的生產環境。

    了解更多

    鐵路

    鐵路

    我們的強固設計 CompactPCI、模組化電腦、工業級系統及平板電腦系列產品特別獲選納入車載 ATO/DMI 及軌旁 CTC/RBC/TSR 鐵路解決方案。凌華科技在設計和製造方面的卓越靈活性廣受全球鐵路號誌領導供應商的青睞。

    了解更多

    機器人技術

    機器人技術

    自主移動機器人(AMR)能夠在沒有或最低限度的人工操作監督之下來執行工作。在一些可以使用大量的AMR設施譬如學校、醫院、大型購物中心和工廠之類的,以提高營運效率和生活品質。

    了解更多
  • 策略夥伴
    AMD Ampere Arm Intel MediaTek NVIDIA NXP Qualcomm

    AMD-based Solutions

    AMD-based Solutions by ADLINK

    Empower your edge computing with ADLINK, a leading company enabling edge solutions. Leverage AMD's high performance, secure integration, and power efficiency advantages for a wide range of edge, networking, and edge systems with x86 core architecture. Experience superior processing and graphics performance with ADLINK's utilization of AMD Ryzen™ Embedded series, powered by Radeon™ RX, perfect for industrial, medical, automation and gaming applications.

    Learn More

    Ampere-based Solutions

    Ampere-based Solutions by ADLINK

    Experience the future of edge computing with our comprehensive offering, which includes the Ampere Altra-based COM-HPC module, a developer platform and/or dev kit. Dive in now to unleash superior performance, energy efficiency, and optimized TCO in applications including but not limited to industrial automation, autonomous vehicles, transportation, healthcare, video surveillance, and energy management.

    Learn More

    Arm-based Solutions

    Arm-based Solutions by ADLINK

    Based on Arm architecture, ADLINK also collaborates with Ampere, NXP, MediaTek, Qualcomm, and Rockchip in module computing development and value-added solutions across varied industries, including smart manufacturing, autonomous driving, robotics, AMR, drone, transportation, logistics, retail, infotainment, healthcare, security, and more.

    With plug-and-play tools, development kits, and all-encompassing systems, ADLINK and Arm empowers developers to accelerate and realize their innovations.

    Learn More

    Intel-based Solutions

    Intel based Solutions by ADLINK

    ADLINK is a Titanium member in Intel® Partner Alliance. From modular computing to system-ready use cases, ADLINK works closely with Intel to provide scalable, interoperable solutions that accelerate your intelligent device deployment with end-to-end analytics.

    Utilizing Intel-based modules, ADLINK accelerates your products’ time to market with edge AI platform development support while addressing diverse industry pain points, such as in networking, smart manufacturing, autonomous driving, AMR, transportation, healthcare, retail, and infotainment.

    Learn More

    MediaTek-based Solutions

    MediaTek-based Solutions by ADLINK

    ADLINK Technology and MediaTek are strategic partners that deliver innovative and powerful solutions for edge computing and edge AI applications. Leveraging MediaTek's flagship, power-efficient Genio platform SoCs and ADLINK's expertise in embedded and rugged designs, they provide high-performance, energy-efficient, and reliable modules and platforms in accomplishing various IoT use cases, such as smart home, human-machine interface, multimedia, industrial IoT, and robotics.

    Learn More

    NVIDIA-based Solutions

    NVIDIA-based Solutions by ADLINK

    To fulfill industry-specific requirements, ADLINK is able to efficiently develop edge AI platforms, AI smart cameras, medical platforms, and AI portable GPU accelerators based on NVIDIA Jetson modules, the NVIDIA IGX platform, and RTX Embedded GPUs for applicable industries, including smart manufacturing, autonomous driving, autonomous mobile robots (AMR), robotics, transportation, healthcare, logistics, retail, infotainment, AI development, professional graphics, and gaming.

    Learn More

    NXP-based Solutions

    NXP-based Solutions by ADLINK

    Utilizing NXP's i.MX 8 and i.MX 9 series technology, ADLINK offers edge-connected solutions to assist medical, test & measurement, automation, and smart city customers reduce TCO. This combination of NXP's technology with ADLINK's R&D experience in edge computing provides versatile and dynamic solutions for critical applications.

    Learn More

    Qualcomm-based Solutions

    Qualcomm-based Solutions by ADLINK

    Qualcomm Technologies’ portfolio of leading robotics and drones solutions is driving next-generation use cases, including autonomous deliveries, mission critical use cases, commercial and enterprise drone applications and more.

    Among them, the Qualcomm QRB5165 solution is designed to help build consumer, enterprise or industrial robots with 5G connectivity, on-device AI and machine learning, superior computing, and intelligent sensing capabilities. By adopting Qualcomm QRB5165, ADLINK’s module will enable the proliferation of 5G in robotics and intelligent systems.

    Learn More
    EdgeOpen Voices

    EdgeOpen™ Voices

    了解業界專家如何透過實際案例與實務洞察推動邊緣 AI 發展。

    立即查看
  • 支援

    支援

    夥伴中心eRMA 服務凌華科技 DDS 支援

    下載

    軟體與驅動程式下載凌華科技 DDS宣傳手冊Content Hub凌華科技 GitHub

    聯絡我們

    銷售諮詢諮詢技術專家全球經銷商

    若您有任何價格、產品庫存問題,或需要任何技術上的協助,歡迎隨時與我們連繫。

    了解更多
  • 關於我們

    價值

    品質政策與資源合作夥伴企業永續環境責任政策CapabilitesProduct Security

    公司

    關於凌華全球據點投資人關係公司簡介企業logo與品牌規範人才招募

    新聞

    新聞與活動Podcast部落格
    Support

    公司新聞、產品資訊、近期活動或技術部落格,一手掌握ADLINK的最新資訊。

    了解更多
  • 首頁
  • Can laser radar systems be designed to be more powerful?
  • 首頁
  • Can laser radar systems be designed to be more powerful?
繁體中文
English
简体中文
한국어
日本語
繁體中文
  • 登錄
  • 登錄
  • home
    • 產品
      嵌入式模組化電腦+ GPU解決方案+ 強固型運算+ 邊緣運算平台+ 工業級顯示系統與平板電腦+ 車用解決方案+ 網路通訊與伺服器+ 自動化與控制+ 設計與製造服務+ 醫療專用電腦與顯示器+ 軟體+
      COM-HPCCOM ExpressOSMSMARCQsevenETX
      MXM GPU 模組PCIe 顯示卡
      CompactPCI & CompactPCI SerialVPXPC104AVA Railway Rugged ComputersPIDS
      工業電腦 / 主機板 / 單板電腦嵌入式電腦 / IoT Gateway邊緣 AI 運算平台AI 智慧相機機器人控制器工業級固態硬碟 (SSD)
      工業級觸控顯示器Open Frame 平板電腦All-in-One 平板電腦強固型面板電腦數位看板播放器
      自動駕駛解決方案AI-ADAS 解決方案
      AI GPU 伺服器工業級邊緣伺服器網路安全平台P5G 工業自動化專網-MicroRAN
      機器視覺運動控制與 I/OEtherCAT 運動控制解決方案HMI 平板電腦資料擷取模組GPIB 與數字化儀PXI 平台與模組自主移動機器人工業物聯網閘道器
      DMS+ (ODM/OEM 服務)
      醫療專用觸控電腦醫療專用顯示器醫療專用 BOX PC
      EdgeGO
      AdvancedTCA 交換器AdvancedTCA 平台AdvancedTCA 刀鋒伺服器
      嵌入式固態硬碟
      COM-HPC Server Type COM-HPC Client Type
      COM Express Type 6 COM Express Type 7 COM Express Type 10 COM Express Type 2
      MXM 3.1 Type A MXM 3.1 Type B
      Pocket AI (可攜式GPU)
      3U VPX 刀鋒伺服器 6U VPX 刀鋒伺服器 VPX 顯示卡, XMC模組
      Mini-ITX 嵌入式主機板 可擴充式無風扇電腦 嵌入式無風扇電腦 ATX 主機板 嵌入式板卡 工業電腦系統 PICMG 單板電腦 無電源背板 工業電腦周邊 工業電腦機箱
      搭載NVIDIA Jetson系列
      ROS2 解决方案 凌華科技ROS2 Github NeuronSDK
      2U 網路安全平台 4U 網路安全平台
      圖像擷取卡/視頻擷取卡 影像分析工具 智慧相機 視覺系統 人工智慧機器視覺設備
      集中式運動控制器 分散式運動控制器 編碼器和觸發器 運動控制軟體和工具
      設備狀態監測與維護平台 資料擷取模組 數字化儀 / 示波器
      PXI 機箱 PXI 控制器 PXI/PXIe 模組 遠端控制器
      AMR
    • 產業
      車用解決方案 軍工與航太 娛樂資訊 智慧醫療 半導體解決方案 智慧製造 鐵路 機器人技術

      車用解決方案

      車用解決方案

      凌華科技的自動駕駛運算平台採用尖端技術,致力提供更安全、更高效的駕駛運行。以強大的運算能力,滿足自動駕駛和先進駕駛輔助系統(ADAS)技術,並提供適用於汽車的堅固設計。

      了解更多

      軍工與航太

      軍工與航太

      在軍工航太領域中,準確觀察環境並做出快速可靠的決策並及時採取行動至關重要。 凌華科技強固的系統和Data Distribution Service(DDS)是大型數據基礎架構的關鍵,該基礎架構可收集、儲存、分析資訊並將資訊從現場傳遞給決策者。

      了解更多

      娛樂資訊

      娛樂

      凌華科技博弈平台解決方案透過我們的軟、硬體和顯示產品為全球遊戲機製造商提供全面性的服務。 我們將電腦專業知識與尖端軟體完美結合,並遵循博弈產業的要求和法規限制來為我們客戶提供服務,使他們能夠專注於打造世界上最好的娛樂體驗。

      了解更多

      智慧醫療

      智慧醫療

      凌華科技專注於醫療可視化設備和經過醫療認證的解決方案,來滿足智慧醫療數位化的需求。 透過PENTA在醫療領域的設計和製造能力,凌華科技的智慧醫療解決方案可加速各種醫療環境中的智慧轉型。

      了解更多

      半導體解決方案

      半導體解決方案

      你所能想像的一切,都因晶片而有所改變。為了滿足不同應用的需求,完美的晶圓製造對於品質的工藝要求到效率和生產力的過程都無比講究。

      了解更多

      智慧製造

      智慧製造

      借由邊緣運算,ADLINK 智慧製造解決方案加速更快的數據決策,為半導體和電子製造業創造更具彈性和安全性的生產環境。

      了解更多

      鐵路

      鐵路

      我們的強固設計 CompactPCI、模組化電腦、工業級系統及平板電腦系列產品特別獲選納入車載 ATO/DMI 及軌旁 CTC/RBC/TSR 鐵路解決方案。凌華科技在設計和製造方面的卓越靈活性廣受全球鐵路號誌領導供應商的青睞。

      了解更多

      機器人技術

      機器人技術

      自主移動機器人(AMR)能夠在沒有或最低限度的人工操作監督之下來執行工作。在一些可以使用大量的AMR設施譬如學校、醫院、大型購物中心和工廠之類的,以提高營運效率和生活品質。

      了解更多
    • 策略夥伴
      AMD Ampere Arm Intel MediaTek NVIDIA NXP Qualcomm

      AMD-based Solutions

      AMD-based Solutions by ADLINK

      Empower your edge computing with ADLINK, a leading company enabling edge solutions. Leverage AMD's high performance, secure integration, and power efficiency advantages for a wide range of edge, networking, and edge systems with x86 core architecture. Experience superior processing and graphics performance with ADLINK's utilization of AMD Ryzen™ Embedded series, powered by Radeon™ RX, perfect for industrial, medical, automation and gaming applications.

      Learn More

      Ampere-based Solutions

      Ampere-based Solutions by ADLINK

      Experience the future of edge computing with our comprehensive offering, which includes the Ampere Altra-based COM-HPC module, a developer platform and/or dev kit. Dive in now to unleash superior performance, energy efficiency, and optimized TCO in applications including but not limited to industrial automation, autonomous vehicles, transportation, healthcare, video surveillance, and energy management.

      Learn More

      Arm-based Solutions

      Arm-based Solutions by ADLINK

      Based on Arm architecture, ADLINK also collaborates with Ampere, NXP, MediaTek, Qualcomm, and Rockchip in module computing development and value-added solutions across varied industries, including smart manufacturing, autonomous driving, robotics, AMR, drone, transportation, logistics, retail, infotainment, healthcare, security, and more.

      With plug-and-play tools, development kits, and all-encompassing systems, ADLINK and Arm empowers developers to accelerate and realize their innovations.

      Learn More

      Intel-based Solutions

      Intel based Solutions by ADLINK

      ADLINK is a Titanium member in Intel® Partner Alliance. From modular computing to system-ready use cases, ADLINK works closely with Intel to provide scalable, interoperable solutions that accelerate your intelligent device deployment with end-to-end analytics.

      Utilizing Intel-based modules, ADLINK accelerates your products’ time to market with edge AI platform development support while addressing diverse industry pain points, such as in networking, smart manufacturing, autonomous driving, AMR, transportation, healthcare, retail, and infotainment.

      Learn More

      MediaTek-based Solutions

      MediaTek-based Solutions by ADLINK

      ADLINK Technology and MediaTek are strategic partners that deliver innovative and powerful solutions for edge computing and edge AI applications. Leveraging MediaTek's flagship, power-efficient Genio platform SoCs and ADLINK's expertise in embedded and rugged designs, they provide high-performance, energy-efficient, and reliable modules and platforms in accomplishing various IoT use cases, such as smart home, human-machine interface, multimedia, industrial IoT, and robotics.

      Learn More

      NVIDIA-based Solutions

      NVIDIA-based Solutions by ADLINK

      To fulfill industry-specific requirements, ADLINK is able to efficiently develop edge AI platforms, AI smart cameras, medical platforms, and AI portable GPU accelerators based on NVIDIA Jetson modules, the NVIDIA IGX platform, and RTX Embedded GPUs for applicable industries, including smart manufacturing, autonomous driving, autonomous mobile robots (AMR), robotics, transportation, healthcare, logistics, retail, infotainment, AI development, professional graphics, and gaming.

      Learn More

      NXP-based Solutions

      NXP-based Solutions by ADLINK

      Utilizing NXP's i.MX 8 and i.MX 9 series technology, ADLINK offers edge-connected solutions to assist medical, test & measurement, automation, and smart city customers reduce TCO. This combination of NXP's technology with ADLINK's R&D experience in edge computing provides versatile and dynamic solutions for critical applications.

      Learn More

      Qualcomm-based Solutions

      Qualcomm-based Solutions by ADLINK

      Qualcomm Technologies’ portfolio of leading robotics and drones solutions is driving next-generation use cases, including autonomous deliveries, mission critical use cases, commercial and enterprise drone applications and more.

      Among them, the Qualcomm QRB5165 solution is designed to help build consumer, enterprise or industrial robots with 5G connectivity, on-device AI and machine learning, superior computing, and intelligent sensing capabilities. By adopting Qualcomm QRB5165, ADLINK’s module will enable the proliferation of 5G in robotics and intelligent systems.

      Learn More
      EdgeOpen Voices

      EdgeOpen™ Voices

      了解業界專家如何透過實際案例與實務洞察推動邊緣 AI 發展。

      立即查看
    • 支援

      支援

      夥伴中心eRMA 服務凌華科技 DDS 支援

      下載

      軟體與驅動程式下載凌華科技 DDS宣傳手冊Content Hub凌華科技 GitHub

      聯絡我們

      銷售諮詢諮詢技術專家全球經銷商

      若您有任何價格、產品庫存問題,或需要任何技術上的協助,歡迎隨時與我們連繫。

      了解更多
    • 關於我們

      價值

      品質政策與資源合作夥伴企業永續環境責任政策CapabilitesProduct Security

      公司

      關於凌華全球據點投資人關係公司簡介企業logo與品牌規範人才招募

      新聞

      新聞與活動Podcast部落格
      Support

      公司新聞、產品資訊、近期活動或技術部落格,一手掌握ADLINK的最新資訊。

      了解更多
繁體中文
English
简体中文
한국어
日本語
繁體中文
  • 登錄

Can laser radar systems be designed to be more powerful?

Xie Chenbo,
Key Laboratory of Atmospheric Composition and Optical Radiation (LACOR),
CAS of the Anhui Institute of Optics and Fine Mechanics

As an advanced means of atmospheric sensing, laser radar systems need profile information with high spatial resolution, high time resolution and high measurement accuracy. There is no doubt that outstanding data acquisition units are a key link for such systems.

 

With the development of current electromagnetic wave radar detection technology from the centimeter or millimeter wave level to the light wave level, the combination of conventional laser technologies and modern laser technologies leads to laser radar having shorter light wave lengths. This is convenient for realizing active remote transmission of optical and physical characteristics and meteorological parameters of the atmosphere, making use of the mutual effects of the laser and the air molecules and aerosol particles in the atmosphere. Meanwhile, with the beneficial characteristics of lasers in terms of monochromaticity, directionality, coherence and high luminance, lasers are unmatched by conventional atmospheric sensing means in terms of measurement levels and accuracy, time resolution, spatial resolution and continuous automatic monitoring. After dozens of years of development, laser radar is now extensively applied in such study fields as laser propagation in the atmosphere, aerosols and cloud radiation, atmospheric environment monitoring, global climate models, and more.

 

Laser radar is an advanced means of atmospheric sensing, and its characteristics result in its high speed and high accuracy requirements for data information. Profile information with high spatial resolution, high time resolution and high measurement accuracy is necessary for laser radar. This is also the biggest challenge for laser radar data acquisition units. Specifically, according to the aerosol and cloud time and spatial distribution in the atmosphere, it is necessary in the design of a laser radar systems to make sure data acquisition has a spatial resolution within 30m, a time resolution within 15min, a measuring signal dynamic range above 104 and a minimum measurement accuracy below 1mV. Considering the challenges and requirements, we finally chose the ADLINK PCI-9846 data acquisition digitizers as the data acquisition units for the laser radar systems to realize the purpose of sensing the aerosols and clouds in the atmosphere at heights of 0km to 15km.

The key to success

 

A laser radar system consists essentially of a laser emission unit, an optical receiving unit, a signal detection unit, a data acquisition unit, and a control unit. Mainly used for A/D conversion and sampling for the electrical signals output by the signal detection unit, the data acquisition unit determines the success of the laser radar system directly.

 

Due to the time and spatial distribution characteristics of the atmosphere and the measuring principles of laser radar systems, laser radar systems also have the following special requirements for their data acquisition units.

 
  • Measuring sensitivity: the actual atmospheric echo signals measured by laser radar systems are typically weak signals; therefore, the data acquisition units of laser radar systems must have high measuring sensitivity.

  • Data acquisition range: air molecules and aerosol particles, which are the detection targets of laser radar systems, exist widely in the troposphere, with a height of 0km to 15km, and their concentrations have an exponential decrease with an increase in height; therefore, the data acquisition units of laser radar systems must have wide data acquisition ranges to meet the sampling needs of signals with large dynamic ranges.

  • Time resolution and spatial resolution: actual atmospheric conditions are non-uniform in both time and space; therefore, the data acquisition units of laser radar systems must have high time resolution and spatial resolution, so that the detailed atmospheric distribution information can be determined effectively.

  • Response capability: laser radar systems must provide accurate spatial distance information; therefore, their data acquisition units must have super-fast response capabilities.

  • Anti-electromagnetic interference capability: laser radar systems are precise optical, mechanical and electrical measuring systems containing both strong currents and weak currents; therefore, their data acquisition units must have excellent anti-electromagnetic interference capabilities.
 

Data acquisition units are important parts of laser radar systems, and their performance parameters determine the detection performance and accuracy of the laser radar systems directly.

Making laser radar systems more powerful

Fig. 1 Outside View (Left) and Structural Diagram (Right) of a PRML Laser Radar System

Polarization-Raman-Mie-scattering LIDAR systems (PRML laser radar systems) are active atmospheric sensing units specially developed for the China Meteorological Administration. They are mainly used for the continuous and automatic measurement of the time and spatial distribution characteristics of the optical parameters of the aerosols (inclusive of polluted aerosols, dust, haze, and so on) and clouds (inclusive of water clouds, ice crystal clouds, and so on) in the atmosphere in the troposphere, from a height of 0km to 15km (Fig. 1).

 

The PRML laser radar system uses a 532nm frequency-doubled, linearly polarized laser of a Nd:YAG laser. Its subsequent optical detection unit is composed of three detection channels, including a Raman detection channel for measuring the 607nm Raman scattering signal generated following the reaction between the 532nm outgoing laser and the particles in the atmosphere, a vertical detection channel for measuring the vertical component of the Mie scattering signals generated following the same reaction, and a parallel detection channel for measuring the parallel component of the Mie scattering signals generated following the same reaction. The vertical distribution characteristics of the optical parameters of the aerosols and clouds in the troposphere can be obtained based on the measured data of the three detection channels and the abovementioned inversion method. The 532nm vertical detection channel and the parallel detection channel both use ADLINK PCI-9846 high-resolution digital acquisition digitizers for data acquisition.

 

To meet the measurement requirements for aerosols and clouds in the atmosphere, PRML laser radar products should have a spatial resolution of 7.5m, a time resolution of 8min, a measurement range of 0km to 15km, and dual-channel signal input. Thus, ADLINK PCI-9846 high-resolution digital acquisition digitizers are used as the data acquisition units. In Table 1, the performance parameters of ADLINK PCI-9846 high-resolution digital acquisition digitizers and the performance parameters of the corresponding laser radar systems are compared.

 
Performance parameters of ADLINK PCI-9846 high-resolution digital acquisition digitizers Performance parameters of the corresponding laser radar systems
Input channel 4 Measuring channel 4 (2 channels are used, in fact)
Sampling rate 20MHz Spatial resolution 7.5m
Sampling accuracy 16bit Dynamic range of signals 32768
Input voltage ±1V Measurement accuracy (voltage) 0.03mV
Input impedance 50Ω Measurement accuracy (current) 0.61uA
Triggering response time < 20ns Range accuracy 3m
 

Table 1. Main Performance Parameters of ADLINK PCI-9846 High-resolution Digital Acquisition Digitizers and the Main Performance Parameters of the Corresponding Laser Radar Systems

 

It can be seen that each ADLINK PCI-9846 high-resolution digital acquisition digitizer has four channels for the concurrent analog data input of four channels, and each laser radar system can realize the concurrent analog data input of four channels. The PRML laser radar system mentioned in this paper uses only two input channels. ADLINK PCI-9846 high-resolution digital acquisition digitizers have a sampling rate of 20MHz, and the corresponding laser radar systems have a spatial resolution of 7.5m, which fully meets the high spatial resolution requirement of atmospheric sensing. ADLINK PCI-9846 high-resolution digital acquisition digitizers have a sampling accuracy of 16bit, and there are 65,536 corresponding sampling points. However, the laser radar detectors output negative currents, so there are actually 32,768 sampling points, and the dynamic range of the sampled signals is above 104, which covers the actual signals detected at a height of 0km to 15km. ADLINK PCI-9846 high-resolution digital acquisition digitizers have an input voltage of ±1V and an input impedance of 50Ω, and the corresponding actual measurement accuracies of laser radar systems are 0.03mv and 0.61uA, respectively, so the digitizers have excellent weak signal detection capabilities. The external triggers of ADLINK PCI-9846 high-resolution digital acquisition digitizers are TTL pulse electrical signals with a response time shorter than 20ns, and the corresponding laser radar systems have a range accuracy of 3m and a high range positioning accuracy. Meanwhile, ADLINK PCI-9846 high-resolution digital acquisition digitizers can be conveniently inserted into the standard PCI slots of industrial personal computers, have fast data transmission speeds, and great anti-electromagnetic interference capabilities. All of the parameters above show that ADLINK PCI-9846 high-resolution digital acquisition digitizers are suitable for the data acquisition of PRML laser radar systems.

Verifying the high quality of results

 

According to the results of the comparison of the data and graphs with the original signal, effective signal and signal-to-noise ratio of ADLINK PCI-9846 high-resolution digital acquisition digitizers, the quality of the data measured by the digitizers complies with the measurement requirements of laser radar systems for aerosols and clouds in the atmosphere.

 

The ultimate goal of atmospheric sensing by laser radar systems is not just to obtain high quality echo signals but to obtain the actual optical characteristics of the atmosphere through an inversion method. The quality of the inversion results of the data measured by laser radar systems is directly determined by the precision and accuracy of the sampled signals; therefore, the only standard for measuring the quality of the sampled signals of laser radar systems is the inversion result of the sampled signals. It is proved by the analysis and comparison results of the actual optical characteristics of the atmosphere that the performance parameters of ADLINK PCI-9846 high-resolution digital acquisition digitizers comply with the measurement requirements for the optical properties of the aerosols and clouds in the troposphere at a height of between 0km and 15km. Furthermore, according to the measurement results of the depolarization ratio, ADLINK PCI-9846 high-resolution digital acquisition digitizers have two channels for simultaneous high quality signal sampling.

 

In order to verify the capability of the long-time continuous operation of ADLINK PCI-9846 high-resolution digital acquisition digitizers, a continuous and automatic measurement lasting for six days, from August 10th to 15th, 2010, was conducted for PRML laser radar systems. The time interval and spatial resolution of the measurements were 30min and 7.5m, respectively. According to the results of the measurements, ADLINK PCI-9846 high-resolution digital acquisition digitizers have reliable capability for continuous operation and are suitable for deployment in the continuous and automatic operating mode of laser radar systems.

 

In summary, it can be observed from the high quality results obtained in real-world tests that ADLINK PCI-9846 high-resolution digital acquisition digitizers can meet the requirements of laser radar systems for data acquisition. This enables the laser radar detection systems to be designed to be more powerful.


Related ADLINK Links:

  • More about ADLINK Digitizers
  • More about PCI-9816/9826/9846
Predictive maintenance: starting with data acquisition 回列表 High Precision, Non-Contact Measurement with Laser Displacement Sensor and USB DAQ
  • 關於我們
  • 使命與願景
  • 企業永續
  • 投資人關係
  • 新聞與活動
  • 加入凌華
  • 聯絡我們
  • 全球據點
  • 全球經銷商
  • 服務
  • 諮詢技術專家
  • 合作夥伴
  • eRMA服務
  • 關注我們
隱私權政策
Cookie 政策
網站地圖
關於凌華全球據點支援
  •    
  •    
  •    
  •    
Copyright © 2025 ADLINK Technology Inc. All Rights Reserved.
TEL:(03) 216-5088 TEL:(03) 216-5088 FAX:(03) 328-5706 Email:tw@adlinktech.com Address:桃園市龜山區華亞一路66號